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The theory of parametric excitations in a8 magnetized plasma by the action of a driver pump with
time-varying amplitude and phase is developed. As a concrete example, amplitude modulation in

the form of rectangular pulse train and phase modulation in a sinusoidal form are assumed. Both

nonresonant interaction, when the driven-pump carrier frequency is larger than all high
eigenfrequencies of magnetized plasma, and resonant interaction, when the carrier frequency is
equal to some of the higher magnetized plasma eigenfrequencies, are studied. Excitations of
upper-hybrid, lower-hybrid, and oblique Langmuir waves coupled to ion-acoustic waves are
considered. In all of these cases threshold values and parametric growth rates are obtained and
compared with the case of a monochromatic driver pump (constant amplitude and phase). The
relevance of the results obtained is discussed for laser and microwave-plasma interactions.

1. INTRODUCTION

The theory of parametric interaction of monochroma-
tic driver pumps with plasmas is relatively well developed.’
On the other hand, there exists a lot of experimental data
which cannot be explained within the framework of a mon-
ochromatic driver-pump parametric theory, namely, those
data directly connected with nonmonochromaticity (nonco-
herence) of electromagnetic radiation generators used in la-
ser fusion,? magnetically confined plasmas heating,>* or in
ionospheric experiments.®

The study of parametric phenomena in plasmas pro-
duced by the action of nonmonochromatic driver pumps is
primarily motivated by two reasons. The first is embodied in
the fact that all real generators of electromagnetic radiation
are inherently nonmonochromatic (noncoherent} with some
frequency bandwidth Aw,. If Awy/y > 1 the frequency band-
width of the driver pump plays a crucial role in the develop-
ment of parametric processes in plasmas (¥ is the parametric
growth rate). The second reason is that all real generators
operate with stochastically>® or dynamically® modulated
amplitude and frequency (or phase) which again results in
nonmonochromaticity of the driver pump. Also, as will be
shown in Part II (see following article)'® simultaneous action
of several monochromatic driver pumps on plasma can be
reduced under certain circumstances to the case of a single

nonmonochromatic driver pump. Besides these, in experi-

mental situations the action of monochromatic electromag-
netic radiation on plasmas is limited in time or occurs as
pulse trains'® of monochromatic radiation impinging on the
plasmas. Both of these cases could be considered as special
forms of amplitude modulation of the driver pumps which,
consequently, appear to be quasimonochromatic.

The explanation of the influence of driver-pump finite
bandwidth on parametric processes sometimes leads to ob-
vious contradictions. For example, in Refs. 11 and 12, it is
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shown that in a laser-produced plasma the threshold for par-
ametric instabilities of longitudinal excitations decreases
with an increase in laser bandwidth, while in Refs. 5 and 13,
the opposite is shown (the threshold value increases with an
increase in laser bandwidth). Theoretical considerations
based on stochastic variation of the driver-pump phase’:
have shown that in the case when the bandwidth Aw, is
much larger than the parametric growth rate y, the thresh-
old of instabilities was significantly increased. For the sto-
chastic amplitude modulation of a driver pump, an analo-
gous result has been obtained in Ref. 6. Pustovalov et al.®
have shown that the increase of the threshold value for para-
metric excitations with an increase in the generator band-
width is not a general effect. For example, in the case of
aperiodic instability, the finite bandwidth of the driver pump
does not affect the threshold value in the case of amplitude
modulation. However, if frequency modulation exists, the
threshold is significantly increased.

From the above-listed results it can be seen that by vari-
ation of driver-pump coherence, we can control the develop-
ment of parametric processes which play a crucial role in the
laser-fusion problem or in laser or radio-frequency heating
of magnetically confined plasmas. It is known, for example,
that in laser fusion, scattering (Raman and Brillouin) para-
metric instabilities lead to the loss of laser radiation while
absorptive (decay and oscillating two-stream) parametric in-
stabilities could lead to the appearance of suprathermal par-
ticles’ which, in turn, preheat the pellet core and reduce
compression efficiency. In the second part of Ref. 10 it was
shown that by convenient amplitude modulation of the driv-
er pump, generation of suprathermal particles, due to the
weak and strong parametric turbulence, could be reduced.
In lower-hybrid"® resonance heating of toroidal plasmas par-
ametric instabilities could be responsible for nonaccessibility
of the driver pump to the center. So, by changing the driver-
pump coherence, undesirable parametric effects could be
avoided or significantly reduced.

*In this paper the study of longitudinal parametric exci-
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tations in magnetized plasma by the action of a pulse-operat-
ed (amplitude-modulated) driver pump is presented. The in-
fluence of phase modulation is also considered. In ‘the
theoretical treatment of this situation the main quantities are

ulse duration (7) of the driver pump, interpulse spacing (T'),
characteristic time (T, ) of the process in the plasma which is
under consideration, and the carrier frequency (w,) of the
driver pump. Further, the interpulse spacing (T) could be
given in a stochastic or a dynamic manner. In the present
paper only the dynamical case will be treated. In reference to
the listed quantities it is to be noted that in the case of a long
interpulse spacing (7') so that T T (T is the relaxation
time of plasma processes) the most important phenomena
take place during the pulse duration time (7). Here, depend-
ing on the ratio of parametric growth rate {y) and inverse
pulse duration time (1/7), nonlinear effects are, or are not, to
be taken into account.'®'” If the parametric growth rate is
much larger than inverse pulse duration time, the nonlinear
effects occur during one pulse and the nonmonochromati-
city of a driver pump does not play any significant role. The
opposite case, when the saturation level is reached during the
sequence of pulses, is more interesting with respect to the
nonlinear parametric phenomena.''’

In conclusion, let us note that the study of action of
nonmonochromatic driver pumps on plasmas agrees with
other studies considering the influence of real experimental
situations on the development of parametric instabilities; for
instance, the influence of inhomogeneity and boundaries,’
the presence of electron beam and current,'s ﬁmte wave-

:ngth of a driver pump,'® etc.

This paper is organized as follows. In Sec. II model
equations based on the Vlasov-Poisson formalism are de-
rived and compared with the case of a monochromatic driver
pump (constant amplitude and phase). In Sec. III we deal
with nonresonant interaction when the carrier frequency of a
driver pump is assumed to be much larger than all the high
eigenfrequencies of the magnetized plasma. In Sec. IV reso-
nant interaction, when the carrier frequency of a driver
pump is equal to the upper-hybrid, lower-hybrid, and obli-
que Langmuir wave frequencies, is studied. Discussion of
results and principal conclusions are given in Sec. V.

Il. MODEL EQUATIONS

Model equations for studying the parametric interac-
tion of a nonmonochromatic driver pump in the form
E(t) = Eyt )sin[oyt + ¢ (¢)][E,(t)and¢ (¢ )arethetime-vary-
ing amplitude and phase of a driver pump and w, its carrier
frequency] with magnetized, homogeneous, electron—ion
plasma are obtained utilizing a known plasma dielectric per-
mittivity formalism' (see the Appendix). They have the fol-
lowing form:

n (wk) = Re(ka)
+ oo +
X ¥ S I + n2 + lwgk), (1a)
l= —on= —
n{w k) = R;(w,k)
+ o + o
x ¥ S In (@ + n2 + logk). (1b)
= -« = - o
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Heren,(w,k) = e, § d, ¥,(w.k,p)is charge density of a plas-
ma component in a reference system oscillating with a parti-
cles and ¥, (w,k,p) is a space-time Fourier transform of a
perturbed one-particle distribution function in an oscillating
frame. Quantity R, (w,k) is defined by R, (0.k) = y, (,k)
X [1 + Xaqlw,k)] ~, where y, (w,k) is the linear susceptibility
of the a plasma component [in our case it is an electron
{a==e) and ion component (@==)}. If the nonperturbed distri-
bution function 1 is Maxwellian for longitudinal dielectric
permittivity of magnetized plasma we have?®

€lw.k) =1+ y. (k) + y;(@k)

pa _ < w

Ta(l ,._Z., o — nil,
XAin(Z.V (ﬁ‘:’))- )
is defined by

In (2), function J ,

2\ [~ t?
J, (x)=xexp (—i—) J-+.-,, exp—é—dt,
Z, =kip,
B =(w—n,)/\k,|Via
and

A,(2) = I, (z)exp( — 2).

In(z) is the modified Bessel’s function and p, and ¥V, are the
Larmor radius and thermal velocity of a particles, respec-
tively. Here k, and k, are the wavenumbers normal and
parallel to magnetic field vector By,

In the following sections (Sec. III and Sec. IV) as a con-
crete example of parametric excitations of magnetized-plas-
ma high-frequency modes, we shall consider excitations of
upper- and lower-hybrid waves and oblique Langmuir waves
coupled to ion-acoustic waves. Oblique Langmuir waves
cover all frequencies between electron-plasma and lower-
hybrid waves depending on the angle of propagation 6. The
corresponding dielectric permittivities of high-frequency
modes could be easily obtained from (2) (see Ref. 20). They
are, respectively,

w? v, 0l +027
unlwk)=1— —2 < —ﬁ—, 3
un (@) Tt e T ay (3)
wh @y @V, kI
eLH(w,k)=l+n—';—z%-+l ‘;, e 2,2w,, 4
2 60829 2 y
501.("-’1‘()=1_wp¢m2 +im:,:t cos” 6, 12,2 aw,.

(5)

Ion-acoustic wave dielectric permittivity has the form
({@>12,, where 12, is the ion-cyclotron frequency)

2 2

emlok) =1+—— 2o ;8 Oy paps (6)
ki, o ©

In(3)and(5)v,, is the electron—ion collision frequency and in
{6) v,, is the ion—ion collision frequency. For the sake of sim-
plicity in the above dielectric permittivities only collisional
dissipation is included. Noncollisional dissipation {Landau
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and cyclotron) can be found, for example, in Refs. 20 and 21.
In system (1) 1, denotes the coefficient of interaction
given by

T
I = —l—f dt J, (u(t)lexplilg {t)jexp( — infdt). (7)
T J

In obtaining system (1) it was assumed that E(f )and ¢ ( ) are
periodic functions with period T = 27/ ({2 is modulation
frequency). Quantity u(t ) is the coupling coefficient having
the form

plt) = [ekEoft)/m,} ) 6,0), ®)

where k is the wavenumber of parametrically excited waves
and e and m, are the charge and mass of an electron, respec-
tively. The function /{6, ) describes the geometry of parame-
tric interaction. If the driver-pump electric field vector has
arbitrary position in space Eq(r) = {Eq,(f).Eo,(t),Eq. (1)},
the magnetic field vector is given by B, = {0,0,B,}, and the
wave vector of excited waves is given by k = {0,k .k, }, then
the function f(6,t ) obtains the following form:

E 2
+—_ 0’(’)sine)
Eyt) a’g - n: Eyt)

2

+(E0x(t) wO‘Oc sin9) .
Eyt) o} —02:

In (9) @ is the angle between vectors k and B, and (2, is the
electron-cyclotron frequency. In what follows we shall be
interested in the interaction of extraordinary
X(E, = {0,E,,0}) and ordinary O(E,= {0,0,E,}) driver
pumps at normal incidence k, = {k,,0,0} with magnetized
plasma. (k, is the wave vector of the driver pump. Here,
however, the driver pump is treated in dipole approximation
|ko| ~0.) The corresponding coupling coefficients are

p(0) =k (rh, + r5)""* (@pe /00p) cos 8
Eqft)

Eo. (1) W
——cos 0

f(3,1)=(

©)

) (10)
[47n (T, + T,)]'"?
BUX) =k (rpe + 1) *@pe /@)’ sin 6

X X
w(z) _‘(23 [47771'(7: + n)]l/z

Note that (8)—{11) are derived for the case |w, — {2, |>{2. The
influence of nonmonochromaticity of a driver pump on par-

ametric processes at electron-cyclotron resonance was con-

sidered in Ref. 4.

As a concrete example of time dependence of E,f) we
shall study the amplitude modulation in the form of a rectan-
gular pulse train with pulse duration 7 and interpulse spac-
ing T,

E, nT<t<r+nT
= =0,1,2.... 12
Edlr) {o r+nT<t<n+ 1T " (12)
For the time dependence of phase ¢ (7 ) we shall assume
$(t) = do (13)
¢ (t) = a sin £t (14)

Now for the case of amplitude modulation given by {12} and
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constant phase (13) for the coefficients of nonlinear interac-
tion we obtain the following forms (see Ref. 22):

I9=1,01= 0= — (1 Jojug)) 222TT/T)
nmw

xXexplinmr/T)}, n#0, (15)
1‘(?)510(1 =0)=1—(7/T)[1 = Joluo)], (16)
V=1, (1 #0) = J o) S0ATT/T)

nm )
: LT
><<:xp(xl¢0 —inm 7) (17)

If amplitude modulation is in the form of rectangular pulse
train (12) and the phase modulation sinusoidal (14} coeffi-
cients of interaction are

]n(1=o)=‘]l(/‘t0)5n.0¥ (18)
1,1 #£0) = J){uoM, (la). (19)

In (15)~{19) the time-independent coupling coefficient y,, is
obtained from (8) and (9) substituting E{t ) with E,. Hered, ,
is the Kronecker symbol.

The system of the model equations (1) describes in a
general manner the interaction of a nonmonochromatic
driver pump with the electron and ion plasma components at
frequenciesw and w, = @ + nf2 + lw,. In the case of excita-
tion of high- and low-frequency magnetized plasma modes,
w, = w,(k) and w = w(k) represent their linear dispersion re-
lations, respectively. By system (1), as well, excitation of two
high-frequency magnetized plasma modes is described, in
which case both @ = w(k) and w, = w,{k) are linear disper-
sion relations of high-frequency magnetized plasma modes.

System (1) could be easily reduced to the case of a mon-
ochromatic driver pump' by putting Ey(r ) = E[E,is Ej }in
t =0}, ¢ (r)=0, and n = 0. Then the coefficient of nonlinear
interaction J,==J, (1), where J, is Bessel’s function of order
“n” and p, is the coupling coefficient evaluated for
Ey(t) = E,. Further, if there is no driver pump (J, = 0 for
n#0 and J, = 1, system (1) describes longitudinal eigen-
modes of magnetized plasma.?®?' _

In the following, model equations (1) will be analyzed
for the case of a transparent plasma when w,>w,, (@,, is the
high eigenfrequency of magnetized plasma) and for the reso-
nant case when oy~ 2wy, and w,~wy.

A. Nonresonant case

Here we shall assume that the carrier frequency of a
driver pump is much larger than all eigenfrequencies of a
magnetized plasma. Now, the relevant responses of electron
and ion plasma componentsaren, ; (w,k)and n,; (@ + nf2.k).
Consequently in system (1) we are to put / =0 so that the
following system describing the nonresonant interaction of a
nonmonochromatic driver pump with magnetized plasma is
obtained:

n, (k) = R, (w,k) f I°n,(w + n2,k),

n= — ao

. (20)
-~ njwk)=Rwk) Y IPnlo+n2k).

n= —
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Here the /'” are coefficients of nonresonant parametric inter-
action [see (7), (15), and {16}]. .

Let us note that in the nonresonant case [as is seen from
(7)], modulation of a driver-pump phase does not play any
role in the development of parametric processes. The system
of model equations (20) is formally identical to Silin’s model
equations’ for the case of resonant parametric interaction of
a monochromatic driver pump with plasma if we substitute
n{2 by nw, and put I'“=J, (u,). However, the system (20)
predicts (as will be shown in Sec. II]) a variety of parametric
excitations in contrast to the monochromatic driver pump-
plasma nonresonant interaction when plasma appears to be
stable.!

B. Resonant case

First, we shall consider the case when w,~2wy
{w~wy>ni2), i.e, summational parametric resonance in
_magnetized plasma® (in the case of isotropic plasma this is
two-plasmon parametric excitation'). The relevant re-
sponses are 11, (w + nf2.k)and n,{o + n2 — wy,k). The cor-
responding model equations take the form:

+
n, (w,k) = R, (w,k) 2 Ion,(w + nf2.k),
n;(w.k) = R,(w,k)
+
X S S I+ n2+ logk). 21)
1=0,-1n= —x

If wg~wy (W<€wy,w + nf24wy), relevant responses
aren, (o + nf2,k)and n (@ + nf2 + wyk). The correspond-
ing model equations are

+ o
nwk) =R (0k) ¥ I n(o+nk),
n;(@,k) = R,(o,k)
x ¥ i I'n,(w + nf2 + lwy k). (22)
I=0,+1n= — x

The most general case of resonance is pw,~wy . However, if
p#1 threshold values are significantly higher and we shall
restrict ourselves to the case p = 1.

1{l. NONRESONANT INTERACTION

In nonresonant interaction we shall study excitation of
two high-frequency modes: (a) (12 ~2w,,w ~wy), excita-
tion of the high-frequency mode coupled to low-frequency
modes; (b) (nf2 ~ w0 €wy); and finally (c) excitation of two
low-frequency magnetized plasma modes (nf2 ~ 2w, ).

{a) Eliminating n, (& + nf2,k)from {1b) and substituting
it into (1a) as a condition that system {1} has a nontrivial
solution, the following dispersion relation is obtained:

DOpI—n — LS
>

O
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P, .

Here

+ o«
D™ =1 + Y.lw + nf2.k) — 2 ll‘,?LPPR,»(w + pi2.k).
Froe (24)

Dispersion relation (23) describes a so-called strong coupling
of plasma modes (the dispersion features of excited modes
are modified by the presence of the driver pump). As is seen
from (24) modification is realized through the ion-plasma
component. A weak mode-coupling dispersion relation is
found from (23} by putting m = 0:

elwX)elw — n2X) = |19 m, /m, (25)

In the case of excitation of two oblique Langmuir waves with
frequency @ = w,, |cos 8 | (excitation of two upper-hybrid
waves was considered in Ref. 24} from (25) for parametric
growth rate

4
y= -é-ww]cose [(m' )kz(rZD, + ri,,-)(ﬂ'i)
@

m; o

sin nmr/r)’ Ej
nmw

(26)
4mn (T, + T))

xf18)

is obtained. In (26) we utilized expression (15) with ,«<1 and
assumed that y»y,,, where ¥, is the linear damping rate of
the oblique Langmuir wave. Minimum threshold for this
excitation is reached if n = 1 and T'= 27

Etz),THR _ 8
41Tn¢(Te + T‘I) kz(rzbe +r2Dllf(9)

x—TH (ﬂ)‘(i"—-) 27)
w, [cos 8| \w, /] \m,
Note that in the case of an X driver pump /(6 )=cos  and in
the case of an O driver pump f{6 }=sin 6.

(b) If n2 ~ 0, (0<€w 4 ) excitation of the high-frequency
magnetized plasma mode coupled to a low-frequency mode
is possible. In this case the dispersion relation obtained from
system (1) [taking into account that dominant R quantities
are R, (@ + nf2,k) and R, (0,k)] has the following form:

L= RO[UPRO + |[OF(RY +RE")],

(28)
R = Y. (@ + nogk)[1 + y, (@ + nwe,k)] -1

Dispersion relation (28) describes strong (/¥ ~0) and weak
(I £0) coupling of the excited waves. In the latter case it
reduces to a dispersion relation for decay and oscillating
two-stream instabilities in plasma upon the action of a non-
monochromatic driver pump. For decay instabilities the
anti-Stokes’ line R ™ could be neglected. Then, for the para-
metric growth rate of the excitation of an oblique Langmuir
wave coupled to an ion-acoustic wave (¥ > ¥y, ¥s)

}’=—1—(0)P,|C056iw,)”2(k"p¢) M
8 nm
w,,\* E}
X —ﬁ) 6 2 29
(2)r01 iz @)

is obtained. In the case of excitation of the upper-hybrid
mode in (29), {w,, |cos 6 jws)'’* is to be substituted for by
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(wunws) !, /wyy). Minimum threshold is reached for
n=1land T'=2r:
Efrur __ 87 ( Yu?s )1/2(&)‘ (30)
4mn, T,  krpf(6) \ o, |cos 6 |wg w, )

In (30) the threshold value is a function of (v, ¥s/w,ws)'’?
in contrast to the resonant case with a monochromatic driver
pump, where it is a function of {(y,/wy)(ys/ws)]. Conse-
quently parametric processes described by (26) and (29) (and
processes similar to them) are weaker than the correspond-
ing ones in the resonant case.

(c)Ifnf2 ~ 2w, (w~w, ) (w, isthe low eigenfrequency of
magnetized plasma) in system (1) the dominant R quantities
are R, ;(w.k) and R, ;(w — nf2,k} so that the dispersion rela-
tion obtains the following form:

€lokle(w — n2.k) = 4|17’y (0 — n2K)y, (k)
Xyilo — n2Xy k.  (31)

As a concrete example, here we shall study excitation of two
low-frequency  ion-acoustic waves [wg = kv cos 6,
vs = (T,/m;)"’?]. The parametric growth rate is

. 4

r=—l—w,|cost9| sin n{r/T) (ﬂ,:)

4 nw W

Ej
6 — Vs, 32
Xf16) amn.T, s (32)
and the minimum threshold (n = 1,7 = 27} is

E}tur _ Ar Vs (&)‘ (33)
4mn, T, f(6) wslcosb| \w,

In (32) ¥ is the linear damping rate of a low-frequency ion-
acoustic wave. In the case of excitation of high-frequency
ion-acoustic waves (w = kvg,wd»£2;) in (32) and (33)
cos f==1.

In conclusion, let us note that the above-studied instabi-
lities are a direct consequence of the nonmonochromaticity
of a driver pump. In the case of a monochromatic driver
pump that is identical with 7 = T coefficients of nonlinear
interaction, 7 ”=0 and coupling of plasma modes does not
exist.

IV. RESONANT INTERACTION

Let us now consider the case when the carrier frequency
of a driver pump is equal to some of the high eigenfrequen-
cies of magnetized plasmas (w,~wy,). Taking into account
that [see 1{a)]

n, (o + n2 + log k) =R, (w + nf2 + lwy,k)

+ e

X ¥ Lo+ pk),
T (34)
from (1b) we obtain
n;(w.k) = R, (w,k) E z n;(w + pN.k)
X [, ,(a) + nf,k)
+ TR, (@ + nf2 + w,,k)
+ LIV R0+ 12 — k)], (35)
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In (35) harmonics of modulation frequency ns2 can be larger,
equal to, or smaller than the low eigenfrequency of the mag-
netized plasmas. All these cases are described by the follow-
ing dispersion relation [obtained from (35) as a demand for
the existence of a nontrivial solution]:

C.lwk) C_,lwk)

Dok = T Do—nik) (36)

Here

€lw,k)

Dwk)= ————‘—[ T+ ro @]

f [Relw + S2 + wo k) ">

S= —

+ R (0 + 82 — wo k) "' ], (37)

I and

+ oc

Cloki= ¥

= — e«

+ R, (0 + 52 — 0o KT+ D]

[R (0 + 82 + wo k) T'=J

+ oo
XS [Rw+p2 + ook 0L
p= —

+R(0+p2 —w 1", (38)

If modulation frequency is large enough 2> w, (n2>w, )
(the case nf2 ~ 2w was considered in Ref. 25) in dispersion
relation (36), dominant R, quantities are R,(w + wqk) so
that in (37) and (38) s=0 and p==0. Then, (36) is reduced to

D(wX)=0. (39)

Neglectingin (39) R, (@ + ¢,k (the case of decay parametric
instabilities) for the parametric growth rate of the excitation
of an oblique Langmuir wave coupled to an ion-acoustic
wave we obtain (y»¥,s, where ¥, and y are linear damp-
ing rates of oblique Langmuir and ion-acoustic waves, re-
spectively):

1 ll(lip - 1)|
=— cos 6 — : 40
Lo feos o (w) kL ()
In the case of an amplitude-modulated driver pump [see
(12)], [T9,~ Y| = (u2 /4)(72/ T %) and, in the case of sinusoidal

phase modulation [see (14)], |11, Y| = (u?/4M 2(a). Tak-
ing this into account, from (40) we obtain (u,<1):

1] 1/2 1 1
= loos O )7 (2 )| T
1/2 /T E,
Xf (9)[10((1)}—————(47”‘7,‘),,2, (41)

where 7/T and Jy(a) corresponds to the amplitude (rectangu-
lar pulse train) and the sinusoidal phase modulation of the
driver pump, respectively. It is evident that result (41) [de-
pendence of ¥ on 7/T and Jy(a)] is general, i.e., does not
depend on a concrete pair of parametrically excited waves.
Similarly, for threshold values,

Ejhr Z{TZ(TZ (E(ZJTHR) 42)
- 4mn, T, o @)\4mn,T, /yon
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is obtained. Here (EJ yr/4mn,T,)pmon is the threshold
value evaluated for a monochromatic driver pump. In (41)
and (42} the case of a monochromatic pump can be obtained
by putting /T =1 and a==0. In the case of excitation of an
upper-hybrid wave (0}, = @, + 2?) coupled to an ion-
acoustic wave [ws =kv,vs=(T,/m)"?] in (41),
(@p |c0s 0 |wg)'/*(1/|cos @]%) is to be replaced by
(@ynos) @, /0yy)* and in the case of excitation of a low-
er-hybrid wave {w, 5 = w,./[1 + (@2, /22)]"/*} coupled
to an ion-acoustic wave by (@sw, 4} 4w, /o, 4) .
Resonant excitation of two high-frequency magnetized
plasma modes is described by model equations {21). Here,
however we shall not study this interaction in detail because

the coupling of modes is realized through the ion-plasma

component [in the case of an infinite-wavelength driver
pump (k, = 0) and a homogeneous plasma], and consequent-
ly threshold values are higher and parametric growth rates
lower by approximately an order of magnitude compared to
ordinary parametric excitations. In the case of a monochro-
matic driver pump in magnetized plasma this excitation was
considered in Ref. 23 and for an isotropic plasma in Ref. 26.

V. DISCUSSION AND CONCILUSION

In this paper a theory of parametric interaction of a
nonmonochromatic driver pump with magnetized plasma is
developed. In the nonresonant case, when w»wy, it was
shown that a variety of parametric instabilities exist. All of
these instabilities are direct consequences of the nonmon-
ochromaticity of the driver pump (in our case nonmonoch-
romaticity is caused by the time variation of amplitude and
phase) and do not exist if amplitude and phase are constant,
i.e., if the driver pump is monochromatic. It is to be noted,
however, that minimum threshold values {27), (30), and (33)
are obtained if n = 1, which, in turn, means that 2 ~aw,,.
Such a high modulation frequency is difficult to realize,
which reduces the significance of this process in experi-
ments. In this sense the most important case is excitation of
two low-frequency magnetized plasma modes (when
0 ~ 2w, ) with weak linear damping rates which lead to low-
er threshold values. Also, due to the nonresonant excitations
described above, a part of the external electric field energy
could be deposited in the regions of magnetized plasma (in
ionospheric experiments or in heating of magnetized plas-
ma), where, without modulation of a driver-pump (ampli-
tude and phase), nonlinear (as well as linear) absorption is
impossible. On the other hand, by the proper choice of the
modulation frequency (2 = 27/T) these effects could be
avoided.

In this paper nonmonochromaticity of a driver pump is
caused by time variation of its amplitude and phase. How-
ever, the main result of the paper could be generalized to
include a finite-bandwidth driver pump. Namely, by pulse
operation of a driver pump in a frequency domain we have n
driver pumps with descrete frequencies @, = w, + ndw
~shere Aw ~ 1/T. So, due to the pulse operation, the driver
pump appears to be a multiple-line driver (for example, the
HF laser}. Taking into account that intensities of the lines
decrease with n as sin nm{r/T )/nm, the case of a pulse-oper-
ated driver pump could be reduced to the case of a finite-
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bandwidth driver pump with bandwidth Aw,~ /7. Setting
the width of the nonlinear interaction ¥ (parametric growth
rate) equal to 4w, we obtain

7/T~y/dw,. (43)

Expression (43} is valid only in the case y>yy,7.. If
¥y <max({yy,y,) in (43) we have to use min{y,,y, ) instead of
¥ (see Ref. 6). Putting (43) into (42) we obtain the general
result of enhancement of the threshold for decay instabilities
if Aw,> y. This result is also found in the case of random
phase and amplitude modulation.”*’

In resonant interaction through decay parametric in-
stabilities (as well as oscillating two-stream instabilities) the
driver pump energy is deposited in particles leading to the
appearance of hot electrons. In laser fusion it represents a
serious problem in pellet design. Raising the threshold val-
ues for these processes [as can be seen from (42)] in laser—
plasma interaction (in the upper-hybrid layer due to the self-
induced magnetic field) the energy of hot electrons could be
significantly reduced. The similar effect of a finite-band-
width driver pump on production of hot electrons via linear
conversion is observed in Refs. 27 and 28.

Recently?® a very interesting experiment on enhance-
ment of ion heating due to the finite bandwidth of a driver
pump at lower-hybrid resonance has been reported. In this
expeniment ¥/Aw,~ 1 so that threshold remained the same
as compared to the case of a monochromatic driver pump. In
order to explain such experiments a development of nonlin-
ear theory is needed. Only in the framework of nonlinear
theory it is possible to find dependence of saturation levels of
excited waves (as well as distribution of the energy over par-
ticles) on the bandwidth, or more generally, on the nonmon-
ochromaticity of a driver pump.
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APPENDIX: DERIVATION OF MODEL EQUATIONS

A homogeneous, fully ionized plasma in interaction
with a nonmonochromatic (amplitude- and/or phase-modu-
lated)driverpumpE(r) = E (¢ )sin[wyt + ¢ (¢ )]isconsidered.
The model equations describing this interaction can be de-
rived from the Vlasov kinetic equations in the following
form:

.

e
—+ V. HVXB,V. £,
It f+7()<o)pf

+ e, Ert)V,f, =0, a=e,. (Al)

Here £, =f, (r,p,?) is a one-particle distribution function of
an “a” plasma component, V, is a velocity of a particles,
and p,, is the corresponding impulse (linear momentum). V,
and V, are gradient operators in real and impulse space. The
electric field in plasma E(r,7 ) has two components—external
E(r) and self-consistent E'"(r,z) {which could be obtained
from the Poisson equation). The perturbed plasma state de-
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scribed by the /! distribution function is governed by the
following equation (after putting the explicit form of the self-
consistent field E'):

af(l) e e

N VR A U A fd do. 52 ¢

3t + a rfa Ja a ; rﬂ pﬂ |I’a —rﬂ] B
= — e, [Elt) + (1/c)V, XB)]V,uf . (A2)

In (A2) the summation is over all plasma components.

Writing Eq. (A2) in the frame of reference oscillating
with a particles, one obtains (after applying the Fourier
transform in r space)

v
aa" 4RV, ¥, + {VXBV, ¥,
t c

4re, e
= kV [ ; —7-2———'3— f dps ¥

+ oo
X ¥ Jilpt)explil [wgt + ¢ (1)1}, (A3)
I= — =

where ¥, =y _(t,k,p) is the perturbed distribution function
SUNk,p,t ) in the oscillating frame of reference. J, is the Bes-
sel’s function of the order / and u(r ) represents a time-depen-

dent coupling coeflicient given by Eq. (8) (Sec. II).

Expanding J, exp[il¢ ()] in a Fourier series:

Jilplt)lexplilg ()] = f

n= — o

T ,
= lT f J,Lule )explil (1 )]exp( — inf2t)dr.  (AS)

I explinf2t), (A4)

From (A3) we obtain

v
=+ v, v, xB)V, ¥,
/4 c

4re, e
— kY, [ ; ——k-—z—B- f dps ¥

+ « + o
X 2 D Tlettwe = infkt — (, (A6)
l= —a n= — o
Further, applying a Fourier transform in time on (A6), and
taking into account that a==e,i, the following system of
equations is obtained:

— oW, + &kv¥, + {VXBYV, ¥,
[

47re.e
a5 [ 5

X +Zw En LV (o+n+ la)o,k)),
l= —ewon= —a

(A7)
— oW, + kY, + (e,/c)VX BV, ¥

4rre;e
— KV, £ (42‘;’2 fdp v+ — f dp

+ o + «

'Y (0 + n + Iwo,k)).

w n= —

Introducing the charge density of the a plasma component
in an oscillating frame n_(w,k) =¢, { dp, ¥, (p,»,k), and
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repeating known procedure for obtaining longitudinal di-
electric permittivity of magnetized plasma®” one obtains (1)
(Sec. I1):

n (k) + x lwkhn, (k)

= x.lwX) E f I'njw + n2 + lw, k),
I=renm-e (AB)

n; (w’k) + Xl (w’k)"i(ka)

+ « + « )
=xiwk) Y 3 I'n(0+n2+ lok).
e —ac N= ~
Here y, (w,k) is the linear susceptibility of the a plasma com-
ponent given by?°
4rel t= 4
velok=—"=dp 3 J, (kl = )

2
k o= .

X kzvpz fg)) + (n‘oa/Val )vp (3,.

w~n, —kV,
For the case of a Maxwellian nonperturbed distribution
function %, {(A9) is reduced to (2) (Sec. II). Note that the
interaction of a nonmonochromatic driver pump with an

isotropic plasma is also described formally by model equa-
tions {A8). Now, however

(A9)

4rel ( dpkV [
XolwK) = Zi f Z_:i, (A10)
uie) = £250t] (a11)
m,w

The case of a nonmonochromatic driver pump in interaction
with an isotropic plasma was studied in Ref. 22.
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